

Management of acute respiratory failure (ARF) in immunocompromised patients

Arzu TOPELI, MD, MSc

Hacettepe University

Faculty of Medicine

Department of Internal Medicine, Medical Intensive Care

Sepsis Research Center

Ankara, Turkiye

No Conflict of Interest regarding the presentation ...

@atopeli

atopeli@hacettepe.edu.tr

Acute Respiratory Failure

- Severe form of acute organ dysfunction characterized by impaired gas-exchange
 - PaO₂/FiO₂ < 300; SpO₂/FiO₂ < 315
- De novo / acute hypoxemic / Type 1 respiratory failure is the predominant type of ARF in immunocompromised patients
- Management
 - Restoration of oxygenation, and decrease the work of breathing
 - Appropriate diagnosis
 - Prediction
 - Diagnostic confirmation
 - Appropriate therapy of the underlying pathology

- Growing number of adults have immune dysfunction
 - Up to 5% of the general population are cancer survivors
 - Transplantation is on the rise
 - Immunosuppressant drugs and immunotherapy are used more
- ARF occurs in up to half of patients with hematological malignancies (AML and allogeneic HSCT) and 15% of those with solid tumours (lung cancer) or solid organ transplantation (heart and lung), with a mortality of 50%

- Immunosuppressed patients comprise 1/3rd of ICU admissions
 - > 3 mo or > 0.5 mg/kg/day steroid use
 - Other immunosuppressive agent use
 - Solid organ transplant patients
 - Chemotherapy for solid tumors within last 5 years
 - Hematologic malignancy
 - Primary immunodefficiencies

 Acute respiratory failure in immunocompromised adults

 Elie Azoulay, Djamel Mokart, Achille Kouatchet, Alexandre Demoule, Virginie Lemiale

 Lancet Respir Med 2019; 7: 173-86

Diagnosis of severe respiratory infections in immunocompromised patients Intensive Care Med (2020) 46:298-314

Elie Azoulay^{1,2*}^(D), Lene Russell³, Andry Van de Louw⁴, Victoria Metaxa⁵, Philippe Bauel⁶, Pedro Povoa⁷, José Garnacho Montero⁸, Ignacio Martin Loeches⁹, Sangeeta Mehta¹⁰, Kathryn Puxty¹¹, Peter Schellongowski¹ Jordi Rello^{13,14}, Djamel Mokart¹⁵, Virginie Lemiale¹ and Adrien Mirouse^{1,2} on behalf of the Nine-i Investigators

Main causes of ARF in the immunocompromised host

- Disease related
 - Leukemic infiltration
 - Leukostasis
 - Lysis pneumopathy
 - Recovery phase of neutropenia
- Infections
- Treatment related
- Diffuse alveolar hemorrhage
- Cardiogenic pulmonary edema

Factors associated with mortality include ...

- 1. Factors reflecting severity of ARF and associated organ dysfunctions
 - Degree of hypoxemia (PaO₂/FiO₂), tachypnea and respiratory distress
 - SOFA score
- 2. Factors related to the initial oxygenation and ventilation strategy
 - Patients requiring \geq 6 L/min O₂ or FiO₂ > 40% \rightarrow \uparrow intubation and hospital mortality (40%)
 - HFNO or NIV failure; Need for invasive mechanical ventilation
- 3. Factors related to the underlying disease and comorbid conditions
 - Older age, frailty or poor performance status
 - Degree of immunosuppression
- 4. Factors related to the cause of acute respiratory failure
 - Invasive fungal infection or unknown cause has worst prognosis
 - Cardiogenic pulmonary edema has the best prognosis
- 5. Factors related to delayed ICU admission

Acute respiratory failure in immunocompromised adults

Lancet Respir Med 2019

7: 173-86

Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study

Elie Azoulay^{1*}, Peter Pickkers², Marcio Soares³, Anders Perner⁴, Jordi Rello⁵, Philippe R. Bauer⁶, Andry van de Louw⁷, Pleun Hemelaar², Virginie Lemiale¹, Fabio Silvio Taccone⁸, Ignacio Martin Loeches^{9,10}, Tine Sylvest Meyhoff⁴, Jorge Salluh³, Peter Schellongowski¹¹, Katerina Rusinova¹², Nicolas Terzi¹³, Sangeeta Mehta¹⁴, Massimo Antonelli¹⁵, Achille Kouatchet¹⁶, Andreas Barratt-Due¹⁷, Miia Valkonen¹⁸, Precious Pearl Landburg¹⁹, Fabrice Bruneel²⁰, Ramin Brandt Bukan²¹, Frédéric Pène²², Victoria Metaxa²³, Anne Sophie Moreau²⁴, Virginie Souppart¹, Gaston Burghi²⁵, Christophe Girault²⁶, Ulysses V. A. Silva²⁷, Luca Montini¹⁵, François Barbier²⁸, Lene B. Nielsen^{29,30}, Benjamin Gaborit³¹, Djamel Mokart³² and Sylvie Chevret³³ for the Efraim investigators and the Nine-I study group

Intensive Care Med (2017) 43:1808–1819

- 1611 patients
 - Hematological malignancies 52%
 - Solid tumors 35%
 - Systemic diseases 17%
 - Solid organ transplantation 9%
- Main etiologies
 - Bacterial 30%
 - Viral 15%
 - Fungal 15%
 - Undetermined 13%

- On admission 37% were intubated
- 57% not intubated
 - Standard O₂ 54%
 - HFNC 20%
 - NIV 17%
 - NIV+HFNC 9%
- ICU mortality 32%,
- Hospital mortality 44%
- 90-day mortality 56%

Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study

Elie Azoulay^{1*}, Peter Pickkers², Marcio Soares³, Anders Perner⁴, Jordi Rello⁵, Philippe R. Bauer⁶, Andry van de Louw⁷, Pleun Hemelaar², Virginie Lemiale¹, Fabio Silvio Taccone⁸, Ignacio Martin Loeches^{9,10}, Tine Sylvest Meyhoff⁴, Jorge Salluh³, Peter Schellongowski¹¹, Katerina Rusinova¹², Nicolas Terzi¹³, Sangeeta Mehta¹⁴, Massimo Antonelli¹⁵, Achille Kouatchet¹⁶, Andreas Barratt-Due¹⁷, Miia Valkonen¹⁸, Precious Pearl Landburg¹⁹, Fabrice Bruneel²⁰, Ramin Brandt Bukan²¹, Frédéric Pène²², Victoria Metaxa²³, Anne Sophie Moreau²⁴, Virginie Souppart¹, Gaston Burghi²⁵, Christophe Girault²⁶, Ulysses V. A. Silva²⁷, Luca Montini¹⁵, François Barbier²⁸, Lene B. Nielsen^{29,30}, Benjamin Gaborit³¹, Djamel Mokart³² and Sylvie Chevret³³ for the Efraim investigators and the Nine-I study group

(9	Hazard Ratios 95% Confidence Inter	vals)	Luca Montini ¹⁵ , François Barbier ²⁶ , Sylvie Chevret ³³ for the Efraim inve
Age (per year)	0.92 (0.86-0.99)		
Initial ventilation strategy (with star	ndard Oxygen as refe	<u>rence)</u>	
High Flow Oxygen (HFNC)	0.77 (0.59-1.01)		
Noninvasive ventilation (NIV)	0.94 (0.69-1.28)	⊢ _∎	
NIV + HFNC	0.74 (0.51-1.09)		
Chronic Respiratory Insufficiency	0.76 (0.54-1.08)		
SOFA score at ICU admission	1.09 (1.06-1.13)		
PaO2/FiO2 < 300	1.47 (1.05-2.07)	<u> </u>	 (
Etiology of the Acute Respiratory Fa	ilure (ARF)		
Pneumocystis jirovecii Pneumonia	2.11 (1.42-3.14)		-
Invasive Pulmonary Aspergillosis	1.85 (1.21-2.85)	<u> </u>	
Undetermined ARF etiology	1.46 (1.09-1.98)		■
		0.5 1	1.5 2 2.5

nin Gaborit ³¹ , Djamel Mokart ³² and udy group ntensive Care Med (2017) 43:1808–1819	Odd Ratios (95% Confidence Intervals)	
Intercept	0.06 (0.03-0.11)	
Age (per year)	1.18 (1.09-1.27)	•
Direct admission to the ICU	0.69 (0.54-0.87)	•
Day 1 SOFA score without respiratory items	1.12 (1.08-1.16)	•
PaO2/FiO2 ≥ 300 (as the reference)		
<100	1.60 (1.03-2.48)	⊢∎i
100-199	1.46 (0.98-2.18)	
200-299	1.30 (0.83-2.05)	H = -1
Need for intubation and mechanical	ventilation (IMV, with no intubatio	n as the reference)
IMV after standard oxygen failure	4.16 (2.91-5.93)	F − ∎−−−1
IMV after high flow oxygen (HFNC)	failure 5.54 (3.27-9.38)	· · · · · · · · · · · · · · · · · · ·
IMV after noninvasive ventilation	NIV) failure 3.65 (2.05-6.53)	⊢
IMV after failure of NIV+HFNC	2.31 (1.09-4.91)	⊢_ ∎i
First line IMV	2.55 (1.94-3.29)	⊢■→
Undetermined ARF etiology	1.43 (1.04-1.97)	⊦∎-1
	0	1 2 3 4 5 6 7 8 9

ICU-acquired pneumonia in immunosuppressed patients with acute hypoxemic respiratory failure: A post-hoc analysis of a prospective international cohort study Journal of Critical Care 63 (2021) 243-245

Ignacio Martin-Loeches, MD^{a,b,*,1}, Michael Darmon, MD^{c,1}, Alexandre Demoule, MD^d, Massimo Antonelli, MD^{e,f}, Peter Schellongowski, MD^g, Peter Pickkers, MD^h, Marcio Soares, MDⁱ, Jordi Rello, MD^J, Philippe Bauer^k, Andry van de Louw, MD¹, Virgine Lemiale, MD^c, David Grimaldi, MD^m, Martin Balik, MDⁿ, Sangeeta Mehta, MD^o, Ac Kouatchet, MD^p, Andreas Barratt-Due, MD^q, Miia Valkonen, MD¹ Jean Reignier, MD^s, Victoria Metaxa, MD^t, Anne Sophie Moreau, MD^u, Gaston Burghi, MD^v, Djamel Mokart, MD^w, Elie Azoulay, MD^c, For the Efraim investigators and the Nine-I study group

- ICU-AP occurred in 10% of patients
- Hospital mortality was 15% in ICU-AP group vs 7% in no ICU-AP group (p<0.001)
- Vasopressors (OR 2.22 [1.46–3.39]) and invasive mechanical ventilation vs HFNC at day 1 (OR 2.12 [1.07–4.20]) were associated with increased risk of ICU-AP
- ICU-AP was independently associated with mortality (HR 1.48 [1.14– 1.91]; P=0.003)

	Incidence of respiratory events	Need for ICU admission	Hospital respiratory mortality
Haematological malignancies			
Acute myeloid leukaemia ^{5,18-23}	22-84%	66%	45%
Acute lymphoblastic leukaemia ^{18,22,23}	7–18.5%	12-15%	38.5%
Lymphoproliferative diseases ⁵	8%	8%	40-50%
Myelodysplastic syndrome ¹⁸	29.4%	20%	17%
Autologous haemopoietic stem cell therapy ^{24,25}	3–28%	42%	3-55%
Allogeneic haemopoietic stem cell therapy ^{26,27}	24–30%	50%	51%
Prolonged neutropenia6.28	8–29·5%	11-16%	5–12%
Solid tumours			
Lung cancer ^{29,30}	26-50%	100%	11.2-60%
Other solid tumours ^{5,30,31}	0.7–10.3%	100%	6.1-55%
Patients on immunotherapy ^{32,33}	1.3-3.6%	1.3%*	
Solid organ transplantation			
Lung transplantation ³⁴	14%	All	65%
Heart transplantation ³⁵	12.5%	All	76.5%
Kidney transplantation ^{36,37}	3·3-4·8%	All	16.4-22.5%

Acute respiratory failure in immunocompromised adults

Elie Azoulay, Djamel Mokart, Achille Kouatchet, Alexandre Demoule, Virginie Lemiale

Characteristics and outcomes of patients with acute myeloid leukemia admitted to intensive care unit with acute respiratory failure: a post-hoc analysis of a prospective multicenter study Annals of Intensive Care (2023) 13:79 Carolina Secreto^{1,8*}, Dara Chean², Andry van de Louw³, Achille Kouatchet⁴, Philippe Bauer⁵, Marco Cerrano¹, Etienne Lengline⁶, Colombe Saillard⁷, Laurent Chow-Chine⁸, Anders Perner⁹, Peter Pickkers¹⁰, Marcio Soares¹¹, Jordi Rello¹²¹³, Frédéric Pene⁴, Wrotinie Lemiale¹⁵, Michael Darmon¹⁵, Sofiane Fodil¹⁵,

Ignacio Martin-Loeches¹⁶, Sangeeta Mehta¹⁷, Peter Schellongowski¹⁸, Elie Azoulay¹⁵ and Djamel Mokart⁸

- Post-hoc analysis of EFRAIM study on AML patients 3 clusters according to clinical, biological and
- Hospital mortality 46.8%
- Variables independently associated with mortality
 - ECOG performance status ≥ 2 (OR = 2.79, p = 0.04)
 - Cough (OR = 2.94, *p* = 0.034)
 - Use of vasopressors (OR = 2.79, p = 0.044)
 - Leukemia-specific pulmonary involvement [namely leukostasis, pulmonary infiltration by blasts or acute lysis pneumopathy (OR = 4.76, p = 0.011)]
 - Liver SOFA score (OR = 1.85, *p* = 0.014)
- Focal alveolar chest X-ray pattern was associated with survival (OR = 0.13, p = 0.001)

radiological features were identified:

- **Cluster 1 "leukemic cluster"**, isolated, milder ARF
- Cluster 2 "pulmonary cluster", symptomatic, highly oxygen-requiring, severe ARF with diffuse radiological findings (mortality OR = 2.48, p = 0.04)
- Cluster 3 "inflammatory cluster", multiorgan failures in addition to ARF (OR = 3.49, p = 0.006)

Acute Respiratory Failure Outcomes in Patients with Hematologic Malignancies and Hematopoietic Cell Transplant: A Secondary Analysis of the EFRAIM Study Transplantation and Cellular Therapy 27 (2021) 78.e1–78.e6

Laveena Munshi^{1,*}, Michael Darmon², Marcio Soares³, Peter Pickkers⁴, Philippe Bauer⁵, Anne-Pascale Meert⁶, Ignacio Martin-Loeches^{7,8}, Thomas Staudinger⁹, Frederic Pene¹⁰, Massimo Antonelli^{11,12}, Andreas Barratt-Due¹³, Alexandre Demoule¹⁴, Victoria Metaxa¹⁵, Virginie Lemiale¹⁶, Fabio Taccone¹⁷, Djamel Mokart¹⁸, Elie Azoulay¹⁶, Sangeeta Mehta¹ On Behalf of the EFRAIM Investigators

Variable	OR	95% CI	P Value
ECOG status 0	Reference	_	_
ECOG status 1	1.30	.77-2.18	.32
ECOG status 2	2.25	1.29-3.93	.04
ECOG status 3	5.33	2.86-9.94	<.001
BAL performed	1.35	1.02-1.56	.04
Vasopressors	2.76	1.83-4.15	<.001
Renal replacement therapy	3.07	1.90-4.94	<.001
Age (per 1 yr)	1.02	1.00-1.03	.03
HM no HCT	Reference	_	_
Autologous HCT	1.07	.57-2.03	.83
Allogeneic HCT	<mark>.</mark> 99	.60-1.66	.98
Other etiologies	Reference	_	_
Fungal infection	1.43	.68-3.01	.34
Undetermined ARF	1.29	.70-2.40	.42

Etiologies and Outcome of Patients with Solid Tumors Admitted to ICU with Acute Respiratory Failure: A Secondary Analysis of the EFRAIM Study

Benguerfi et al. Respiratory Care 2023;68:740-748

- 529 had solid tumors: 33% lung cancer, 21% breast cancer 10%, GI cancer 9%
- Cause of admission: bacterial or viral infection 42%; cancer or treatment related 16%; extrapulmonary sepsis 12%, fungal infection 4%, unknown 12%
- Hospital mortality rate 46%. Independent factors related with mortality
 - Chronic cardiac failure OR 1.78 [1.09–2.92]
 - Lung cancer OR 2.50 [1.51–4.19]
 - Day 1 SOFA OR 1.97 [1.32-2.96]
 - Non-infectious etiologies OR 0.32 [0.16–0.61]

Etiologies and Outcomes of Acute Respiratory Failure in Solid Organ Transplant Recipients: Insight Into the EFRAIM Multicenter Cohort

Messika, et al. Transplantation Proceedings, 52, 2980e2987 (2020)

- 142 were SOT recipients; kidney 51%, lung 23%, liver 20%, heart 5%
- Invasive diagnostic strategy was more frequently performed in lung transplant recipients with a trend toward a higher rate of bacterial etiology in lung than kidney transplant recipients
- ICU survival 75%, hospital survival 63%, 90-day survival 55%; although statistically not significant lung tx patients had the worst prognosis
- SOFA score (OR 1.19 [1.06-1.33] and ECOG ≥ 3
 4.26 [0.91-20.06]

Assessing the cause of ARF at the bedside

- D Duration of respiratory symptom
- I Immunosuppression type
- R Radiological pattern (CXR, lung USG ...)
- E Experience of clinician regarding similar cases
- C Clinical findings
- T Tomography (HRCT)

Acute respiratory failure in immunocompromised adults

Elie Azoulay, Djamel Mokart, Achille Kouatchet, Alexandre Demoule, Virginie Lemiale

Lancet Respir Med 2019; 7: 173–86 Oxygenation strategy during acute respiratory failure in immunocompromised patients

Journal of Intensive Medicine 1 (2021) 81-89

Virginie Lemiale^{1,*}, Elise Yvin¹, Achille Kouatchet², Djamel Mokart³, Alexandre Demoule⁴, Guillaume Dumas¹, Grrr-OH Research Group

Diagnostic algorithm

- Performed in 39% of patients who had mostly hematological malignancy and a higher severity of illness score
- Achieved a diagnosis in 27% of patients and resulted in a management change in 38% of patients
- Associated with **worsening of respiratory status in 11%** of patients
- Rate of **undiagnosed causes was 13%**
- Associated with higher ICU (40% vs 28%; p<0.0001) and hospital mortality (49% vs 41%; p=0.003)
- Associated with increased risk of hospital mortality (OR 1.4 [1.1–1.8] after propensity score matching

	- Bacterial infection, fluid overload, pulmonary oedema, alveolar haemorrhage							
	Pre	Pre-treatment phase		Treatme	ent induction		Consolic	lation
	Pretrea	atment		Treatment	induction		Consolidation	
Fror	n diagnos	osis to 1-2 days		weeks	1 r	nonth	> :	1 year
Mye	eloid M	Lymphoid M	Myeloid M	Lymphoid M	Myeloid M	Lymphoid M	Myeloid M	Lymphoid M
Leu infil	ukemic Itration	Leukemic infiltration	Lysis pneumopathy	Penomococcal pneumonia	Invasive aspergillosis	RSV pneumonia	ARDS during neutropenia recovery	Fusarium infection
Leul	kostasis	Influenza pneumonia	Cytarabine related	Pleural infiltration	Mucormycosis	Varicella pneumonia	Extrapulmonary septic ARDS	Nocardia infection
Alv prot	veolar teinosis	P jirovecii pneumonia	Cardiogenic edema	Eosinophilic lung disease related to chemotherapy	Parainfluenza pneumonia	CMV pneumonia	TBC	Geotrichum infection
Соти	Newly diagnose myeloid leuk	d chronic Newly diagnosed T aemia acute lymphoblas leukaemia Earliest phase	ed T-cell Acute myeloid Hairy cell leukaemia treated pneumonia pneumonia ublastic leukaemia with 2-chlorodeoxyadenosine Myelodysplastic NK/T-cell lymphoma in syndromes nia Early phase Intermediate phase			Acute myeloid leukaemia Consolic	T-cell acute lymphoblastic leukaemia lation	
Diagno	osis		1–2 days	1-:	2 weeks	1 n	nonth	1 year
	Acute respiratory failure in immunocompromised adults							

Acute respiratory failure in immunocompromised adults

Elie Azoulay, Djamel Mokart, Achille Kouatchet, Alexandre Demoule, Virginie Lemiale

Lancet Respir Med 2019; 7: 173–86

Diagnosis of severe respiratory infections in immunocompromised patients Intensive Care Med (2020) 46:298-314

Elie Azoulay^{1,2*}, Lene Russell³, Andry Van de Louw⁴, Victoria Metaxa⁵, Philippe Bauer⁶, Pedro Povoa⁷, José Garnacho Montero⁸, Ignacio Martin Loeches⁹, Sangeeta Mehta¹⁰, Kathryn Puxty¹¹, Peter Schellongowski¹², Jordi Rello^{13,14}, Djamel Mokart¹⁵, Virginie Lemiale¹ and Adrien Mirouse^{1,2} on behalf of the Nine-i Investigators

Туре	Family	Genus	Virus
RNA viruses	Orthomyxoviridae	Influenza A	All Influenza A subtypes
		Influenza B	Influenza B
	Paramyxoviridae	Rubulavirus	Human parainfluenza virus type 2 (PIV-2) Human parainfluenza virus type 4a (PIV-4a) Human parainfluenza virus type 4b (PIV-4b)
Ρ		Respirovirus	Human parainfluenza virus type 1 (PIV-1) Human parainfluenza virus type 3 (PIV-3)
	Pneumoviridae	Metapneumovirus	Human metapneumovirus (hMPV)
		Orthopneumovirus	Human orthopneumovirus/Respiratory syncytial virus A (RSV-A) Human orthopneumovirus/Respiratory syncytial virus B (RSV-B)
	Coronaviridae	Betacoronavirus	Middle East respiratory syndrome-related coronavirus (MERS-CoV) Severe acute respiratory syndrome-related coronavirus (SARS-CoV) Human coronavirus NL63 Human coronavirus 229E Human coronavirus HKU1 Human coronavirus OC43
	Picornaviridae	Enterovirus	Enterovirus A-L Rhinovirus A, B, C

Table 4 Systemic viruses responsible for pneumonia in immunocompromised patients

Virus type	Source	Extra-respiratory manifestations	Diagnosis
HSV (HSV-1, HSV-2)	Donor transmission to transplant recipient Reactivation in T-cell defects	Skin and genital eruption Encephalitis, esophagitis, Keratitis	PCR (blood, BAL, tissue) Tissue culture Serology Histopathology
VZV	Donor transmission to transplant recipient Reactivation in T-cell defects	Varicella, herpes zoster Encephalitis, cerebellitis, hepatitis, myelitis Herpes zoster ophthalmicus	PCR Direct fluorescent antibody testing Viral culture Histopathology
CMV	Donor transmission to transplant recipient Reactivation in T-cell defects	Esophagitis, gastritis, colitis Retinitis, encephalitis, myelitis, polyradicu- lopathy Neutropenia	PCR (blood, BAL) Histopathology Serology
Adenovirus	Reactivation	Hemorrhagic cystitis, nephritis Colitis, hepatitis, encephalitis	Viral culture (nasal, blood, urine, CSF, tissues) EIA, Immunofluorescence, PCR, serology Histopathology

Diagnosis of severe respiratory infections in immunocompromised patients Intensive Care Med (2020) 46:298-314

Elie Azoulay^{1,2*} , Lene Russell³, Andry Van de Louw⁴, Victoria Metaxa⁵, Philippe Bauer⁶, Pedro Povoa⁷, José Garnacho Montero⁸, Ignacio Martin Loeches⁹, Sangeeta Mehta¹⁰, Kathryn Puxty¹¹, Peter Schellongowski¹², Jordi Rello^{13,14}, Djamel Mokart¹⁵, Virginie Lemiale¹ and Adrien Mirouse^{1,2} on behalf of the Nine-i Investigators

Prognosis of critically ill immunocompromised patients with virus-detected acute respiratory failure

Guillaume Dumas^{1*}, Maxime Bertrand^{2,3}, Virginie Lemiale^{2,3}, Emmanuel Canet⁴, François Barbier⁵, Achille Kouatchet⁶, Alexandre Demoule⁷, Kada Klouche⁸, Anne-Sophie Moreau⁹, Laurent Argaud¹⁰, Florent Wallet¹¹, Jean-Herlé Raphalen¹², Djamel Mokart¹³, Fabrice Bruneel¹⁴, Frédéric Pène^{15,16} and Elie Azoulay^{2,3} *Annals of Intensive Care* (2023) 13:101

Prognosis of critically ill immunocompromised patients with virus-detected acute respiratory failure

Guillaume Dumas^{1*}, Maxime Bertrand^{2,3}, Virginie Lemiale^{2,3}, Emmanuel Canet⁴, François Barbier⁵, Achille Kouatchet⁶, Alexandre Demoule⁷, Kada Klouche⁸, Anne-Sophie Moreau⁹, Laurent Argaud¹⁰, Florent Wallet¹¹, Jean-Herlé Raphalen¹², Djamel Mokart¹³, Fabrice Bruneel¹⁴, Frédéric Pène^{15,16} and Elie Azoulay^{2,3} *Annals of Intensive Care* (2023) 13:101

B

Crude in-hospital mortality rate 38%

Covariates Bacterial infection Virus	OR [95%CI] Ref. 0.77, CI [0.60–0 .	.98]	p-value
Influenza	0.99 [0.72-1.36]	⊢ ∎1	0.95
Influenza-like*	0.54 [0.33-0.88]	⊢	0.01
Others	0.98 [0.58-1.65]	⊢_ ∎1	0.94
IFI	2.06 [1.32-3.21]	⊢	<0.001
PJP	1.24 [0.83-1.84]	⊢	0.30
Specific lung diseases	1.12 [0.83-1.51]		0.45
		0.50 1.0 2.0 4.0	
		Odds Ratio	
	*	RSV, parainfluenza	, hMPV

Invasive fungal infections

- Pneumocystis jirovecii
- Aspergillus spp
- Cryptococcus spp
- Mucorales
- Fusarium

Parasitic infections

- Toxoplasma gondii
- Strongyloides stercoralis

Diagnostic and therapeutic approach to infectious diseases in solid organ transplant recipients

Jean-François Timsit^{1,2*}[®], Romain Sonneville^{3,4}, Andre C. Kalil⁵, Matteo Bassetti⁶, Ricard Ferrer⁷, Samir Jaber⁸, Fanny Lanternier^{9,10}, Charles-Edouard Luyt^{11,12}, Flavia Machado¹³, Malgorzata Mikulska¹⁴, Laurent Papazian¹⁵, Fréderic Pène^{16,17}, Garyphalia Poulakou¹⁸, Claudio Viscoli¹⁴, Michel Wolff¹⁹, Lara Zafrani²⁰ and Christian Van Delden²¹

< 4 weeks 1-12 months > 12 months Maximum immune suppression Post surgical Late-onset Nosocomial infections Opportunistic infections, **Opportunistic infections** relapses reactivations Community-acquired infections General **Organ-specific** Latent Bacteria infections of Nocardia, Listeria^a *Mycobacterium tuberculosis* **VA-ECMO** infection the host Heart Health-care associated and community-acquired bacteria Wound infection Fungi Line Aspergillus^b Aspergillus^b **Bacterial pneumonia** infection Mucor, ^a Scedosporium^a Mucor^a, Scedosporium^a Lung Cryptococccus neoformans^a Anastomotic Pneumocystis jirovecii c leaks Candidemia Nosocomial Virus pneumonia Influenzae and other respiratory virus Liver Enterobacteriaecae Herpes viruses ^C bacteremia Donor-**HBV** and HCV infections derived infection Parasites 63 Toxoplasma gondii^a Sepsis from urinary Strongyloides stercoralis^a Kidney Clostridium tract source difficile

a low incidence

b high incidence in lung Tx

c high incidence if no prophylaxis

Oxygenation and ventilation

- Earlier studies have shown higher mortality in immunocompromised patients who required IMV.
- However, more recent studies have revealed that failure of NIV or HFNO was associated with higher mortality, and even that early IMV was associated with improved survival, as IMV is a reflection of disease severity.

Effect of High-Flow Nasal Oxygen vs Standard Oxygen on 28-Day Mortality in Immunocompromised Patients With Acute Respiratory Failure The HIGH Randomized Clinical Trial JAMA. 2018;320(20):2099-2107.

Elie Azoulay, MD, PhD; Virginie Lemiale, MD; Djamel Mokart, MD, PhD; Saad Nseir, MD, PhD; Laurent Argaud, MD, PhD; Frédéric Pène, MD, PhD; Loay Kontar, MD; Fabrice Bruneel, MD; Kada Klouche, MD, PhD; François Barbier, MD, PhD; Jean Reignier, MD, PhD; Lilia Berrahil-Meksen, MD; Guillaume Louis, MD; Jean-Michel Constantin, MD, PhD; Julien Mayaux, MD; Florent Wallet, MD; Achille Kouatchet, MD; Vincent Peigne, MD; Igor Théodose, MS; Pierre Perez, MD; Christophe Girault, MD; Samir Jaber, MD, PhD; Johanna Oziel, MD; Martine Nyunga, MD; Nicolas Terzi, MD, PhD; Lila Bouadma, MD, PhD; Christine Lebert, MD; Alexandre Lautrette, MD, PhD; Naike Bigé, MD, PhD; Jean-Herlé Raphalen, MD; Laurent Papazian, MD, PhD; Michael Darmon, MD, PhD; Sylvie Chevret, MD, PhD; Alexandre Demoule, MD, PhD

	Deaths at Day 28/	Deaths at Day 28/Total No. of Patients		Favors High- Eavors	
Subset	High-Flow Nasal Oxygen Therapy	Standard Oxygen Therapy	Hazard Ratio (95% CI)	Flow Nasal Standard Oxygen Therapy Oxygen Therap	у
ICU admission to randomization, d					
0-1	120/321	118/330	0.95 (0.74-1.22)		
≥2	18/67	22/58	1.55 (0.83-2.90)		
Pa0 ₂ : FI0 ₂ ratio					
<200	99/237	95/251	0.89 (0.68-1.19)		
≥200	16/65	10/35	1.18 (0.54-2.60)		
Oxygen flow at randomization, L/m	iin				
≤9	122/348	127/347	1.06 (0.83-1.36)		
>9	16/40	13/41	0.76 (0.36-1.57)	_	
Catecholamines					
No	121/355	126/349	1.08 (0.84-1.39)		
Yes	17/33	14/39	0.62 (0.31-1.26)		
Unknown diagnosis					
No	99/297	95/303	0.93 (0.70-1.23)		
Yes	39/91	45/85	1.39 (0.90-2.13)		
Hematologic malignancy					
No	66/199	72/198	1.11 (0.79-1.55)		
Yes	64/167	65/181	0.94 (0.67-1.33)	_	
All patients	138/388	140/388	1.02 (0.81-1.29)		
				0.2 1	

Hazard Ratio (95% CI)

High-flow nasal oxygen alone or alternating with non-invasive ventilation in critically ill immunocompromised patients with acute respiratory failure: a randomised controlled trial Lancet Respir Med 2022; 10:641-49

Rémi Coudroy, Jean-Pierre Frat, Stephan Ehrmann, Frédéric Pène, Maxens Decavèle, Nicolas Terzi, Gwenaël Prat, Charlotte Garret, Damien Contou, Arnaud Gacouin, Jeremy Bourenne, Christophe Girault, Christophe Vinsonneau, Jean Dellamonica, Guylaine Labro, Sébastien Jochmans, Alexandre Herbland, Jean-Pierre Quenot, Jérôme Devaquet, Dalila Benzekri, Emmanuel Vivier, Saad Nseir, Gwenhaël Colin, Didier Thevenin, Giacomo Grasselli, David Bougon, Mona Assefi, Claude Guérin, Thierry Lherm, Achille Kouatchet, Stephanie Ragot, Arnaud W Thille, for the FLORALI-IM study group and the REVA Research Network*

	HFNO alone group (n=154)	NIV group (n=145)		Hazard ratio (95% CI)	Pinteraction
All patients	56/154	51/145	_ #	1.03 (0.73–1.56)	
Type of immunosuppression					
Haematological malignancy or leucopenia or neutropenia	31/81	22/75		1.37 (0.80–2.37)	0.18
Others	25/73	29/70		0.82 (0.48–1.41)	
PaO ₂ /FiO ₂ at inclusion					
>200 mm Hg	6/25	7/21		0.81 (0.26–2.51)	
≤200 mm Hg	50/129	44/124	_ _	1.11 (0.74-1.66)	0.50
Cause of respiratory failure					
Confirmed diagnosis	48/132	40/118	_ _	1.09 (0.71-1.65)	0.07
No diagnosis	8/22	11/27		1.01 (0.40-2.56)	0.0/
	0.0 0.5 1 1.5 2.0 2.5 3.0				

Immunocompromised patients with acute respiratory distress syndrome: secondary analysis of the LUNG SAFE database Critical Care (2018) 22:157

Andrea Cortegiani^{1*}, Fabiana Madotto², Cesare Gregoretti¹, Giacomo Bellani^{3,4}, John G. Laffey^{5,6,7}, Tai Pham^{6,7}, ⁻rank Van Haren^{8,9}, Antonino Giarratano¹, Massimo Antonelli¹⁰, Antonio Pesenti^{11,12}, Giacomo Grasselli¹¹, _UNG SAFE Investigators and the ESICM Trials Group

Survival in Immunocompromised Patients Ultimately RequiringInvasive Mechanical VentilationAm J Respir Crit Care Med Vol 204, Iss 2, pp 187–196, Jul 15, 2021A Pooled Individual Patient Data Analysis

Guillaume Dumas^{1,2}, Virginie Lemiale^{1,2}, Nisha Rathi³, Andrea Cortegiani⁴, Frédéric Pène⁵, Vincent Bonny^{1,2}, Jorge Salluh⁶, Guillermo M. Albaiceta^{7,8}, Marcio Soares⁶, Ayman O. Soubani⁹, Emmanuel Canet¹⁰, Tarik Hanane¹¹, Achille Kouatchet¹², Djamel Mokart¹³, Pia Lebiedz¹⁴, Melda Türkoğlu¹⁵, Rémi Coudroy^{16,17}, Kyeongman Jeon^{18,19}, Alexandre Demoule²⁰, Sangeeta Mehta²¹, Pedro Caruso²², Jean-Pierre Frat^{16,17}, Kuang-Yao Yang^{23,24}, Oriol Roca^{8,25,26}, John Laffey^{27,28}, Jean-François Timsit²⁹, Elie Azoulay^{1,2}, and Michael Darmon^{1,2}

- 24 ICUs, 11,000+ pts
- 74% were intubated within 24 hours of ICU admission (early intubation)
- The crude mortality rate was 53%
- Mortality for time from admission to intubation OR 1.38 [1.26-1.52]
- Mortality for early intubation OR 0.83 [0.72-0.96]
- After propensity match, OR for **delayed intubation, 1.56** [1.44-1.70]

	OR (95% CI)	P Value
Time to intubation, d^* Age >60 yr	1.38 (1.26–1.52) 1.73 (1.56–1.92)	<0.001 <0.001
Underlying disease Nonmalignant immunosuppression	Ref.	
Solid tumor Hematological malignancy	1.56 (1.34–1.81) 1.69 (1.38–2.05)	<0.001 <0.001
Respiratory etiology undetermined	1.46 (1.10–1.94)	0.01
>300 mm Hg 200–299 mm Hg 100–199 mm Hg	Ref. 1.32 (1.05–1.67) 1.56 (1.25–1.95)	0.02
<100 mm Hg	2. 26 (1.79–2.85)	<0.001
Year of admission	0.96 (0.95–0.97)	< 0.001

In conclusion ...

Try to avoid undetermined diagnosis !

> Try to avoid delayed ICU admission !

Thank you ...

atopeli@hacettepe.edu.tr @atopeli

N